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An expression is derived for the posterior error probability in the Mu-II Sequential
Ranging System. An algorithm is developed which closely bounds the exact answer and
can be implemented in the machine software. A computer simulation is provided to
illustrate the improved level of confidence in a ranging acquisition using this figure of
merit as compared to that using only the prior probabilities. In a simulation of 20,000
acquisitions, with an experimentally determined threshold setting, the algorithm detected
90 percent of the actual errors and made false indications of errors on 0.2 percent of the

acquisitions.

l. Introduction

In the interest of economizing on the acquisition time in
the Mu-II Ranging System, it is desirable to find an upper
bound on the error probability in a range determination, given
suitable estimates of the signal and noise levels and the entire
set of receiver correlator outputs. A complete description of
this ranging machine can be found in Ref. 1.

The Mu-II operates by receiving a sequence of square waves,
each member of the sequence having twice the period of the
previous one (Fig. 1). The highest frequency component pro-
vides the required precision, while each subsequent component
is used to resolve the remaining ambiguity, which is equal to
the previous component’s period. Upon correlation of each
component with a locally generated reference, the receiver
shifts the local reference in an attempt to force the next
component onto a peak of its triangular correlation curve. A

quadrature output is also produced by correlation of the signal
with a 90-deg shifted version of the reference.

An initial assumption made here is that the 27 modulus
phase delay of the first (highest resolution) component was
measured exactly (r in Fig. 1). For the second component, and
for all subsequent components, a binary decision must be
made as to whether the in-phase correlator output is at a
positive or negative peak, as discussed in Ref. 2. It is the
probability of correctness of this set of decisions that will be
examined here.

ll. A General Expression for the Posterior
Probability

If R is a vector of all in-phase correlator outputs f, and all
quadrature correlator outputs Q,,, the posterior probability
that all decisions were made correctly is, by Bayes’s rule,
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As nothing is known about the transmitted vector,
P(correct) = 2~V and P(incorrect) = 1-2N, giving

P(incorrect) P(Rlincorrect)] ™"
P(correct) P(R|correct)

)

)

_ . P(Rlincorrect]™
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P(R|correct) is simple to compute because, given that com-
ponents were received correctly, the means of all the @, are
zero. The probability that component »n will yield output

values Q,,, 1, is

P.(1,.0,8) = PR ISy ®

where S is the mean of I,,. By the receiver decision rule, S,
will have a sign equal to the sign of .

These probabilities are mutually independent when condi-
tioned on a sequence of correct decisions, so

N
P(R|correct) = HPn(Rnlso) 4)
n=1

P(Rlincorrect) is much more difficult to determine. This is
because the location of the mean for a given component
depends on the sequence of prior errors. The mean will, in
general, be located off the I axis, This probability can be
expanded as

D P(RIS) P(S)

all§

P(Rincorrect)
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where S is an V bit binary sequence other than the sequence
chosen by the receiver. As there are 2%V - 1 equally likely
sequences S, P(S) = (2% - 1)1, The desired expression is then

N P (R 5]
©

P(correct|R) = [1 * Z n P RIS,
n¥n"0

all § n=1

To evaluate each P, (R, S), the position of the mean for
component # is determined by assuming S to be the correct
sequence and comparing this with the sequence produced by
the receiver, thus making known the nature and location of all
errors in the receiver decision under this hypothesis.

lil. Development of a Useful Bound

Evaluating the sum in Eq. (6), with its 2N - 1 terms, each
containing NV factors, is clearly impractical for the usual values
of N (often > 10) encountered. In order to be useful as an
indicator of performance in the Mu-Il, a lower bound must be
found for (6) which is simple to compute but sufficiently tight
to be meaningful. At this point, we observe that all of the R,
are Gaussian random variables of equal variance with probabil-
ity densities of the form -

PR ,IE,) = 2no?y exp { [, ~1.°

o1
202
+ (In - uni)z]}

where M, is the mean vector resulting from the specified
condition on P, (R,,). This substitution makes (6) become

-1
P(correct|R) = [:1 + Zn Fn(§)j| (8)
S n

M

where

F (8) = exp {—1; [m2 -l )
20
®
+2(Inum‘ * Qn”nq - |In |m)]

Here, (k,; My,) is the mean vector derived for P.(R,IS
and m is the magnitude of S,. The (t,;, #,,) are the compo-
nent means seen by the receiver if its decision was incorrect
and the S under consideration is correct.




The 2V - 1 possible sequences S can be classified into
types. Each type is denoted by the number of agreements with
receiver decisions before a disagreement occurs. Thus, if there
are V components, there will be NV types of decision sequences,
numbered from 0 to NV -~ 1. (A sequence with NV agreements
corresponds to the receiver decision and the set S specifically
excludes this case.) It is easy to see that there will be 2V-p~1
members of a type p sequence.

Now, if there are p agreements before a disagreement, the
first p values of (u,,;, ,unq) will be simply (S, 0) and the first p
values of F,,(S) will, using (9), be unity. Component p + 1 will
still have its mean on the [ axis, specifically at (-5, 0). For
n =p + 2, the vector (u,,, Myq) becomes either (0, m) or
(0, ~m), because of error at component p + 1 shifts the mean
onto the @ axis. The value of Fp+2 () can be upper bounded
by always choosing the sign of m to minimize the distance
between the mean and R,,. Using (9),

-2m

F,G) = exp{-—gz— |1p+1|} =F o (10)
and

Fp+2(§)<exp{"7’f EIP”l - |Qp+2|]} =F .. (n

Equation (8) can now be lower bounded by

N-1 -1

P(correctlR) > [1+ 2 Gp (12)
p=0

where G, is an upper bound on the sum of products over a
particular S type:

N-p-1p § G
G, <NFUE L Fo || F (S), (13)
n>p+2

where all factors with subscripts greater than / are taken equal
to unity.

A simplifying approximation can be used to determine the
Fn(§) when # > p + 2. Upper bounds on these can be computed
by choosing, for each component, a mean vector (i, unq)
that will result in the largest possible value of F,,. Such worst
case values are independent of S and need only be computed
once for each component,

Such a bound can be obtained by realizing that the possible
means associated with a particular sequence S are confined to
a locus of points as shown in Fig. 2. (Ref. 2). Attention has
been restricted to the first quadrant as would be done in
practice by using the absolute values of I, and Q,. For R, in
the shaded region bordering the I axis, the nearest possible
mean (the one that will maximize F,) is the point (m, 0). If
R is in the shaded region bordering the Q axis, the nearest

n —
mean is the point (0, m). For all other R, , the nearest mean is

the intersection of the locus of means with a perpendicular

passing through R, , yielding a vector (u,,;, ,unq) where

by ==Im- (10, II,D]
(14)
g = 5 Im+ (10,1 1, D]

Using Eq. (9)

a) F

n

1for |[I|>mand Q| < |1~ m,

b) F, exp[—”j(lgn|—|1,,|)]
g

for |Q|>m and |11 <|Q| - m

) F, exp{”‘l“ [m -, D+ lin]z} otherwise.
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(15)

[t is apparent from (13) that the F, need not be computed for
n<3,

An improvement in the tightness of the bound can be
realized by taking into account the discrete nature of the
possible locations for the means. It is clear that the first
component can only have a mean at (m, 0). Each subsequent
component has 27~2 + [ possible means equally spaced along
the line joining (m, 0) and (O, m). In general, the location of
these will be given by

W= mij2n? (16)

ni

and

u;q =m-u,. = m(l-i2"?),

n>1 i=0,1,2...,2"2
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An upper bound on F, is found by again dropping a perpen-
dicular from R,, to the diagonal locus of means. In general,
this intersection will not satisfy (16). It is easily seen that the
nearest mean satisfying (15) is found by choosing a value for i
that will minimize |u,,; - u;u-l. Substituting values from (14)
and (16),

t

Mn" n -2

1 =

n m

LA A Y-
m

The resulting g, and b, can be inserted into (9) and the
result

rounded to
nearest integer an

n>1

m . n2— , -
F_ = exp (;; {(1 - 2% [(zan2 - (rl-1e, |):|}) (18)
for n > 1 can be used in place of (15c).

This expression will provide noticeable reductions in the 7,
compared with (15¢), especially for low values of  where the
nearest g, is often far from p,,;.

To reiterate the procedure of finding a bound for
P(correct|R),

(a) Computeasetof F, (n=3,4,...,N)
from

Fo=1

n

for 7| >mand QI < |I|- m

n
i

exp [ﬂ;- (|Qn[~ |1n|):| for |Q1 > m and /| <|Q|- m
o

F = o (—’?’— {52 [m - a1 IQnD]})
o
Otherwise, (19)
where
L 1-1Q, I
i = <1+———" n)2”'3
n m
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rounded to the nearest integer.
(b) Computeasetof F, (n=1,2,...,N)

from

- -
F = CXP{_GZH IInl}. (20)

(c) Compute a set ofl?n n=2,3,...,N)

from
F = " ar 21
n = €Xp ?(lnI—IQnI) o2y
(d) Compute a set of N - 1 products

G,=+»F F. [lF vo.. 5102

P 17 p
n>pt2
The result is then given as
N-1 -1
R)>
P(correct|R) 1+ Zl Gp (23)
p=

IV. Simulation

A computer program was developed to simulate a ranging
acquisition by generating a random binary vector, suitably
corrupted with Gaussian noise. The vector was sequentially
detected, care being taken to properly shift the means of
subsequent components when a detection error was made. A
modified version of the algorithm found in Ref. 3 was used.

The simulation consisted of 20,000 trial acquisitions, each
with 10 lower frequency components. The value of m/o was
3.5, for a postcorrelation SNR of 7.9 dB. Using Ref. 2, the
prior probability of a correct acquisition was determined to be
approximately 0.998. The expected number of errors over the
sample is then about 40. The number of errors that actually
occurred was 39. Various thresholds were considered and an
error was assumed to have occurred when the algorithm
returned a number below threshold. Table 1 summarizes the
results.

It is important to note that all the undetected errors (with
the exception of one additional at 0.01 threshold) occurred on




the last component of the acquisition. Such an error is partic-
ularly difficult to detect because there is no following compo-
nent from which to observe the shift of the mean onto the Q
axis. If the rest of the components were received reliably, the
error probability will be essentially that of the last component,
as if it were the only one transmitted. This probability will
never be less than 0.5. The problem could be circumvented by
transmitting one more code component than is necessary to
resolve the range ambiguity. The received component could
then be used to check the reliability of the previous decision
but would not be used in the range calculation.

The reason why it is possible to detect virtually all errors
even with a rather low threshold is found in the behavior of
the probability bound for “marginal” acquisitions. In such
cases the number returned by the algorithm is often considera-
bly less than the actual probability of being correct. Thus it
becomes necessary to experimentally determine a threshold
setting for the signal-to-noise ratios of interest. When an error
was actually made in the simulation on any but the last
component, the algorithm reacted very strongly by returning
values almost always below 0.01 and typically less than 10~5,

Overall, the average figure of merit for the 20,000 trials was
0.991. It is assumed that an average over the true posterior
probabilities would converge to the prior correctness proba-
bility, 0.998.

V. Conclusion

It should be possible to reduce the integration time for
receiving the lower frequency components if this algorithm is
used to determine a figure of merit for each acquisition. Such
a reduction may be of importance for very long distance
ranging when signal power is low and integration times are
correspondingly long,

Also, during superior solar conjunction, a ranging acquis-
ition should be performed in as short a time as possible to
reduce the change of bursts of noise interfering strongly with
the signal, Ranging via several short acquisitions has been seen
to be effective in such highly dynamic noise situations
(Ref. 4). It is expected that the posterior error probability
bound would be a very useful figure of merit given the result-
ingly low signal-to-noise ratios.
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Table 1. Performance of the figure of merit algorithm
for varlous threshold settings

Errors Errors not False error

Threshold detected detected indications
0.9 39 0 579
0.9 38 1 236
0.8 38 1 183
0.7 37 2 140
0.6 36 3 113
0.5 35 4 91
0.4 35 4 79
0.3 35 4 68
0.2 35 4 53
0.1 35 4 37
0.01 34 5 16




CODE C0

CODE C]

CODE C2

- 41 -

CODE PHASE DISPLACEMENT —# ¢

Fig. 1. Transmitted codes with respective correlation functions.

The measured phase of the highest frequency component is =

Q
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Q

(m,0)

w1

Fig. 2. Determining the nearest possible mean to the received
vector R
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